
Windows Software Packaging with Chocolatey

What is Chocolatey?

What is Chocolatey?

According to the official Chocolatey website:

“Chocolatey is kind of like apt-get, but for Windows
(with Windows comes limitations). It is a machine level

package manager that is built on top of nuget command
line and the nuget infrastructure.”

Source: https://chocolatey.org/faq#what-is-chocolatey

What is Chocolatey not?

What is Chocolatey not or what does it not do?
It is not a magic wand or a silver bullet.

It has limitations and pitfalls.

It is a software packaging and deployment tool. Period.

It takes effort to do proper software package management. Chocolatey isn’t going to solve
your software packaging and distribution problem overnight (although it may come close).

Disclaimer: Security and compliance go hand in hand but are not the same thing.
Chocolatey can be a huge efficiency-booster for any organization with respect to software
package deployment and patching, and can be very secure if used correctly. Unfortunately,
like many powerful tools, it can also be very dangerous and has the potential to do incredible
damage if wielded incorrectly. With great power comes great responsibility.

Ok...so...what’s the point?

Open Source Software Deployment

● Open Source Chocolatey and is free (as in beer) to use. Even commercially.

● Packages (which utilize metadata) are built using PowerShell script(s).

● Anything you can do in PowerShell, you can deliver with Chocolatey.

● Packages can be deployed on almost any Microsoft Windows operating system

● Free (as in beer) is a powerful motivator for many organizations.

● So is security compliance. Update all installed packages with a single command.

● Public feed is globally-sourced with package maintainers in a moderated community.

● Packages (and binaries) gets scanned by Virus Total and follow a moderation process.

● When was the last time you enjoyed packaging an app and deploying it?

“You’ve never deployed software faster
than you will with Chocolatey.”

-Rob Reynolds (creator)

Source: https://chocolatey.org/docs/why

Let’s do a history review!

The really old classic way of deploying application software

1. Search for most recent version of the application software you need to deploy
2. Pick (hopefully) the right download.
3. Wait for it to download
4. Maybe verify the checksum (if it’s even provided)? Maybe scan for malware.
5. Install it manually (next, next, next anyone?). Possibly in an OS image?1

6. Hope it didn't install any malware
7. Now do it again for EVERY piece of software you need to deploy.
8. Repeat when a new version of the application software is released.

1Shameless plug for my talk tomorrow about Automating Windows OS Image Creation

The -really old +newer classic way of deploying application software

1. Search for most recent version of the application software you need to deploy
2. Pick (hopefully) the right download.
3. Wait for it to download
4. Maybe verify the checksum (if it’s even provided)? Maybe scan for malware.
5. Install it manually (next, next, next anyone?).+Create scripted install. Deploy post-image.1

6. Hope it didn't install any malware
7. Now do it again for EVERY piece of software you need to deploy.
8. Repeat when a new version of the application software is released.

1Shameless plug number two for my talk tomorrow about Automating Windows OS Image Creation

The somewhat modern way of deploying application software

1. Search for most recent version of the application software you need to deploy
2. Pick (hopefully) the right download.
3. Wait for it to download
4. Maybe verify the checksum (if it’s even provided). Maybe scan for malware.
5. Create a task sequence or package with an end-point management tool
6. Schedule the package installation and deploy to selected systems
7. Hope it didn't install any malware
8. Now do it again for EVERY piece of software you need to deploy.
9. Repeat when a new version of the application software is released.

Deploying application software with Chocolatey

1. To install: choco install google-chrome -y
2. To update: choco upgrade google-chrome -y
3. To uninstall: choco uninstall google-chrome -y
4. To force reinstall: choco install google-chrome -y -f

That’s it.

So what exactly is a Chocolatey Package?

● Chocolatey packages are known as nupkg files, which is a compiled NuSpec (fancy zip

file) that knows about package metadata (including dependencies and versioning).

● A Chocolatey package can contain embedded software and/or automation scripts.

● This includes PowerShell scripts (v2+) as well as other types of files including the

option of embedding binaries.

● Can be used directly from chocolatey.org/packages or from internal web server.

● Allow easy upgrading, uninstalling, and syncing with Programs and Features.

● Can be used to deploy MSI, Exe, ClickOnce, and many other installer types.

● Even installers with complicated silent installation options, ex. response files.

So what exactly is a Chocolatey package?

In short, a zip archive, with a different file extension: .nupkg.

Inside this .nupkg is a collection of various files. We’re going to focus on two files
in particular which do most of the heavy lifting through metadata.

The first is the .nuspec file, a collection of metadata about the software to be
installed including title, version (semver), download URL, author/maintainer,
copyright and license info, release notes, etc.

The second is the chocolateyInstsall.ps1 file, which are the actual instructions
Chocolatey uses to run an installer from the command-line.

The .nuspec file
Example: PaperCut NG Client
<?xml version="1.0" encoding="utf-8"?>
<package xmlns="http://schemas.microsoft.com/packaging/2011/08/nuspec.xsd">

<metadata>
<id>vcuPaperCutNG-Client</id>
<version>18.0.4</version>
<title>PaperCut NG Client</title>
<authors>PaperCut Software International</authors>
<owners>griffithhc</owners>
<licenseUrl>https://www.papercut.com/kb/Category/Licensing</licenseUrl>
<projectUrl>https://www.papercut.com/</projectUrl>
<iconUrl>https://n8felton.files.wordpress.com/2015/06/papercutnewlogo.png?w=1400</iconUrl>
<requireLicenseAcceptance>true</requireLicenseAcceptance>
<description>https://www.papercut.com/products/ng/manual/common/topics/feature-sectdesc.html</description>
<summary>PaperCut NG is a comprehensive print management system designed to monitor and control print

resources.</summary>
<releaseNotes>https://www.papercut.com/products/mf/release-history/</releaseNotes>
<copyright>PaperCut Software International</copyright>
<language>en-US</language>
<serviceable>true</serviceable>
</metadata>

</package>

https://nuget.ts.vcu.edu/package-files/download?packageId=vcuPaperCutNG-Client&version=18.0.4&feedName=TS&path=vcuPaperCutNG-Client.nuspec
https://www.papercut.com/products/ng/manual/common/topics/feature-sectdesc.html

chocolateyInstall.ps1
Example: PaperCut NG Client
$packageName = 'PaperCut Client Software'
$toolsDir = "$(Split-Path -Parent $MyInvocation.MyCommand.Definition)"
$fileLocation = Join-Path $toolsDir 'pc-client-admin-deploy.msi'

$zipArgs = @{
packageName = $packageName
unzipLocation = $toolsDir
url = 'https://files.nuget.ts.vcu.edu/packages/ts/PaperCutNGClient.zip'
checksum = '726A4921529BD40EF3F2EBE676A3493E2A280BCFBEF45A6C75944CDC2CB15298'
checksumType = 'sha256'

}
$packageArgs = @{
packageName = $packageName
file = $fileLocation
fileType = 'msi'
silentArgs = '/qn /norestart ALLUSERS=1'
validExitCodes = @(0)

}

Install-ChocolateyZipPackage @zipArgs
Install-ChocolateyInstallPackage @packageArgs

https://nuget.ts.vcu.edu/package-files/download?packageId=vcuPaperCutNG-Client&version=18.0.4&feedName=TS&path=tools/chocolateyInstall.ps1

Is there an easier way to build packages?

What about security?

Why you should “internalize” packages
In short, there is no reason you can’t use the community repository of Chocolatey packages.
However, bear in mind that packages are created and maintained by people from around the
world and while the efficiency gained from effectively crowd-sourcing package creation is
awesome, it only takes one slip-up for a bad actor to gain a foothold inside your network.

While the most popular packages on the community repository (chocolatey.org) are safe to
use, assuming moderators have approved them, you should still review the package code,
check virus-total scan results (not only for the package but also the binary), and test before
deploying en masse. Repeat with new versions as necessary.

Internalizing packages can be easy with the right tool. It can also save you some hassle in
the long run. In fact, internalization is a feature of the paid edition, Chocolatey for Business.

What does Chocolatey look like in action?

Hosting Chocolatey packages internally

Requires a NuGet Server (web server) to serve .nupkg files from a feed/repo.

Use same web server can be used to serve binaries, or a SMB/CIFS share.

These commercial-off-the-shelf software solutions come with a NuGet server built
in: Inedo ProGet, JFrog Artifactory, Sonatype Nexus

I’m going to demonstrate how to use ProGet inside your own network to host your
internal-only Chocolatey packages for consumption by end-point management
solutions and directly via scripts, command-line, and GPOs.

DEMO TIME

End-Point Management Software Platforms

Chocolatey can be used with end-point management, deployment, and
orchestration platforms such as:

● Microsoft Deployment Toolkit (MDT)
● System Center Configuration Manager (SCCM)
● LANDesk Management Suite
● Dell KACE
● and many others...

Configuration Management Platforms

Such as:

● Puppet
● Chef
● Ansible
● Salt
● PowerShell DSC
● and again, many others.

Puppet

include chocolateypackage { 'git':
ensure => latest,
provider => 'chocolatey',
source => 'https://my.internal.repository/api/v2',

}

Chef

chocolatey_package 'git' do
action :install
source 'https://my.internal.repository/api/v2'

end

Ansible

win_chocolatey:
name: git
source: https://my.internal.repository/api/v2/

What about GPOs?

Deploying Chocolatey Packages with GPOs
1. Create a new GPO
2. Create a startup script using Powershell that looks like this:

choco install package -s https://my.internal.repository/nuget -y

or...

https://my.internal.repository/api/v2/

$ChocoPackages = @(“googlechrome”,”adobereader”,”notepadplusplus.install”,”7zip.install”)

foreach($Package in $ChocoPackages) {
try {Invoke-Expression “cmd.exe /c choco install $Package -y” -ErrorAction Stop}
catch {Throw “Failed to install $Package” }

}

Source: https://www.petervanderwoude.nl/post/tag/chocolatey/

Use an array

Q&A

Hands-On Workshop

	Windows Software Packaging with Chocolatey
	What is Chocolatey?
	Slide Number 3
	What is Chocolatey?
	What is Chocolatey not?
	What is Chocolatey not or what does it not do?
	Ok...so...what’s the point?
	Open Source Software Deployment
	“You’ve never deployed software faster than you will with Chocolatey.”
	Let’s do a history review!
	The really old classic way of deploying application software
	The -really old +newer classic way of deploying application software
	The somewhat modern way of deploying application software
	Deploying application software with Chocolatey
	So what exactly is a Chocolatey Package?
	So what exactly is a Chocolatey package?
	The .nuspec file
	chocolateyInstall.ps1
	Is there an easier way to build packages?
	Slide Number 20
	What about security?
	Why you should “internalize” packages
	What does Chocolatey look like in action?
	Slide Number 24
	Hosting Chocolatey packages internally
	DEMO TIME
	End-Point Management Software Platforms	
	Configuration Management Platforms
	Puppet
	Chef
	Ansible
	What about GPOs?
	Deploying Chocolatey Packages with GPOs
	Use an array
	Q&A
	Hands-On Workshop

